
Supplementary Note 1: cTEUR violation implies TEUR violation

The main motivation for the definition of a complexity version of the TEUR (cTEUR), is that unlike
the TEUR, the cTEUR takes into account resource exchange, and therefore distills the fact that some
knowledge of the Hamiltonian is the necessary condition for violations. The implication is that TEUR
violations due to resource exchange are not necessarily violations of the cTEUR. However, violating the
cTEUR does imply a violation of the TEUR.

We prove that cTEUR violates the TEUR for energy accuracy defined by mean-deviation [1] as well
as standard deviation.

Definition 5. Mean deviation of an energy measurement of an eigenstate with eigenvalue E is defined
as

∆E =
∑
E′

Pr(E′|E) |E − E′| (1)

The claim is as follows:

Claim 1. Violating the cTEUR implies violating the TEUR. Let H be an n qubits Hamiltonian
with norm ‖H‖ = O(2n), A unitary energy measurement with confidence η = 2/3 and β = o(1/poly(n))
implemented in computational complexity T (n), s.t. δET (n) = o(1/poly(n)), namely, a cTEUR viola-
tion, implies ∆E∆t < 1/2 where ∆t is the measurement duration and ∆E is the the mean deviation of
the outcome. Similarly, cTEUR violation implies ∆E∆t < 1/2.

The following lemma provides tools for the error comparison:

Lemma 3 (δE vs ∆E and ∆E). Consider the distribution of an energy measurement of an eigenstate
of H with eigenvalue E, s.t. the expectation value is Ē.

a. ∆E ≤ η(δE)2 + 4(1− η) ‖H‖2 + 3(ηδE + 2(1− η) ‖H‖)2

b. ∆E ≤ ηδE + 2(1− η) ‖H‖

Proof.

a:
We start with the following three identities, which we use to show that if the confidence is high, the

standard deviation can’t be much larger than δE.

(Ē − E)2 =

(∑
E′

Pr(E′|E)(E′ − E)

)2

=

 ∑
E′:|E′−E|≤δE

Pr(E′|E)(E′ − E) +
∑

E′:|E′−E|>δE

Pr(E′|E)(E′ − E)

2

≤ (ηδE + (1− η) · 2 ‖H‖)2
,

(2)

∑
E′

Pr(E′|E)(E′ − E)2 =
∑

E′:|E′−E|≤δE

Pr(E′|E)(E′ − E)2 +
∑

E′:|E′−E|>δE

Pr(E′|E)(E′ − E)2

≤ η(δE)2 + (1− η)(2 ‖H‖)2,

(3)

and similarly, ∑
E′

Pr(E′|E) · |E′ − E| ≤ ηδE + 2(1− η) ‖H‖ . (4)
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The proof is as follows

(∆E)2 =
∑
E′

Pr(E′|E)(E′ − Ē)2 =
∑
E′

Pr(E′|E)(E′ − Ē ± E)2

≤
∑
E′

Pr(E′|E)
[
(E′ − E)2 + (E − Ē)2 + 2

∣∣(E′ − E)(E − Ē)
∣∣]

≤ η(δE)2 + 4(1− η) ‖H‖2 + (ηδE + 2(1− η) ‖H‖)2 + 2(ηδE + 2(1− η) ‖H‖)(ηδE + 2(1− η) ‖H‖)

= η(δE)2 + 4(1− η) ‖H‖2 + 3(ηδE + 2(1− η) ‖H‖)2

(5)

b:

∆E =
∑
E′

Pr(E′|E) |E′ − E| =
∑

E′:|E′−E|≤δE

Pr(E′|E) |E′ − E|+
∑

E′:|E′−E|>δE

Pr(E′|E) |E′ − E|

≤ ηδE + 2(1− η) ‖H‖
(6)

We can now proceed to the proof of the claim:

Proof. We first amplify the confidence by repeating the measurements m = poly(n) times, using Lemma

1 (declared in the methods section), thus accuracy δE and with η′ = 1 − e−
m
2 (1− 1

2η )
2

and β′ = mβ.
Substituting η and the Hamiltonian norm in Lemma 3b we get ∆E ∈ o(1/poly(n). The complexity of the
amplification (assuming using linear complexity median algorithm) is O(mT (n)) and its time duration
is at most τ0mT (n) where τ0 is the time to apply one gate. Finally,

∆t∆E ≤ τ0mT (n)∆E ∈ o(1/poly(n)) (7)

Hence ∆t∆E is asymptotically smaller than any constant and the TEUR is violated.
The same proof applies if standard deviation (∆E) is used instead of mean deviation, using Lemma

3a,
∆t∆E ≤ τmT (n)∆E ∈ o(1/poly(n)) (8)

We now explain in detail why the other direction might not be true (namely, violating the TEUR does
not imply violating cTEUR) using the example of Y. Aharonov and Bohm [2]. This example violates the
TEUR, however, it does not seem to violate the cTEUR. In this example the violation of the TEUR is
achieved by increasing the interaction strength of the measurement Hamiltonian by an arbitrary factor
c > 0. We claim that this increase is reflected also in an increased computational complexity of the
measurement: Let Umeas. = e−iHmeas. be the measurement implementation, and let f(n) be the time
complexity of simulating the Hamiltonian Hmeas. for one time unit (i.e., implementing Umeas.). The
naive way to simulate cHmeas. for one time unit, in order to improve the accuracy by a factor of c, is
to concatenate c copies of the circuit implementing e−iHmeas. . This yields a total time complexity cf(n)
- and the factor c cancels with the one we get for the improvement in accuracy. But perhaps there are
more efficient ways to simulate e−iHmeas. than the naive way? Theorem 5 ensures us that there exists
a Hamiltonian Hmeas. s.t. if c is exponential in n, implementing e−iHmeas.c requires super polynomial
resources unless BQP = PSPACE (BQP,PSPACE are defined in Supplementary Note 8).

Supplementary Note 2: cTEUR Violations for fully known Hamiltonians

We revisit the simple counter example to the cTEUR described by equation (5) in the main text; it
provides an infinite violation of the cTEUR (as well as of the TEUR) using a simple Hamiltonian on n
spins (or qubits). Let

H =

n∑
i=0

σzi . (9)
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Given an eigenstate, which is a tensor product of the eigenstates of each of the σz’s, a measurement of
each of the spins in the eigenbasis of the Pauli σz, (the computational complexity of this measurement
is O(n)) reveals the eigenvalue to infinite precision, namely, with δE = 0. The demolition error however
might be very large since most eigenstates are superposition of computational basis states. To avoid
demolition altogether, an alternative measurement can be performed efficiently, using standard quantum
computation tricks: Add a register of log(n) qubits all initiated in the state 0, and apply the unitary
version of the classical computation which computes w(i), the number of 1’s in the string i of the original
system, and writes it down on the additional register. In other words, apply the unitary operator:

U |i〉|0logn〉 = |i〉|w(i)〉 (10)

this can be done using n times poly(log n) gates [3]. Now measure the right register, which gives the
correct energy with δE = 0.

We note that here we have assumed that a single spin measurement in the computational basis can
be performed with no error. We claim that a similar statement holds also when errors are taken into
account, but a full analysis with noise (of this and other claims in the article) is left for future work.

More generally, consider the n qubit Hamiltonian H =
∑
i λi |ψi〉 〈ψi|, and assume that it is QC-

solvable, i.e., we have full knowledge of its eigenstates and eigenvalues in the following sense: the functions
|i〉 7→ |ψi〉 and i 7→ λi can be computed by a quantum computer in polynomial time in n. An infinite
violation of the cTEUR can be achieved: One can first apply the unitary U =

∑
i |i〉 〈ψi| on the state to

be measured, use the function i 7→ λi to write the energy on an ancilla register, and measure the ancilla.
Finally apply U−1 to derive the original state again without any deviation.

These infinite violations assume full knowledge of the eigenstates and eigenvalues of the Hamiltonian
in the above sense.

Supplementary Note 3: cTEUR/TEUR for unknown Hamiltonians

We observe the TEUR for completely unknown Hamiltonians [1], in fact holds for a more general setting,
when only the eigenvalues are unknown. Namely, H is taken from a set of Hamiltonians all of which have
the same set of eigenvectors, but we know nothing about their eigenvalues. We proceed to convert the
mean-deviation used in [1] to 2/3−accuracy (definition 4). Finally we use the previous results to prove a
cTEUR for Hamiltonians with unknown eigenvalues.

Theorem 5 (TEUR for Hamiltonians with unknown eigenvalues (adapted from [1])). If the eigenvalues
of a Hamiltonian acting on a system are unknown, then the mean deviation ∆E (see definition 5) with
which one can estimate the energy of an eigenstate with energy E in a time duration ∆t obeys the
constraint

∆E∆t > 1/4. (11)

Proof. The proof of TEUR for completely unknown Hamiltonians [1] holds for the case in which only
eigenvalues are unknown. One might be worried however that by applying the Hamiltonian on several
probes in parallel on entangled states as is done for example in the case of NOON states (see Supple-
mentary Note 9), one might be able to bypass the bound achieved in [1]. However, it was shown [4] that
given any measurement scheme which applies the Hamiltonian on several probes (registers) in parallel,
one can apply standard quantum computation techniques of adding a register and swapping between
registers, to arrive at an equivalent protocol which only applies the Hamiltonian on one probe (register)
sequentially. Hence we take ∆t to be the total time the Hamiltonian was applied.

In terms of 2/3-accuracy, Theorem 5 takes the following form:

Theorem 6. Let H be a Hamiltonian with unknown eigenvalues. The 2/3-accuracy δE of measuring
the energy of an eigenstate depends on the time the Hamiltonian was sampled ∆t by

δE∆t ≥ 1/3 (12)

Proof. Assume by contradiction that there exists some family of Hamiltonians with unknown eigenvalues
(but fixed eigenstates which are common to all), and also that there exists a given eigenstate and constants
δE and ∆t, s.t. one can perform an energy measurement of the eigenstate with 2/3-accuracy δE, while
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applying the Hamiltonian for ∆t, and yet δE∆t < 1
3 . We will derive a contradiction by showing that

this implies a protocol which is too strong, for the distinguishability problem studied in [1].
The distinguishability problem is defined as follows: Given access to a Hamiltonian by a black box,

determine whether the Hamiltonian in the box is H1 or H2 = H1+ε1 (it is promised that the Hamiltonian
in the box is one of the two, and it is assumed that there are no computational bounds outside the box,
and in particular, we can feed the box any eigenstate we want). Both Hamiltonians have an a-priory
probability 1/2. Define the probability of error for a protocol for this task by:

Perr =
1

2
[Pr(output 2|H1) + Pr(output 1|H2)] . (13)

Using our assumed energy measurement, we can derive a protocol for this distinguishability task
between two Hamiltonians from the family: H1 and H2 = H1 + ε1, with ε = 2/3∆t. Apply an energy
measurement with 2/3-accuracy δE < 1/3∆t = ε/2, to an eigenstate of the Hamiltonians (which by
assumption we can generate). We know the energy of the eigenstate is either E or E+ ε. The procedure
outputs H1 if the measurement outcome is closer to E than to E + ε and outputs H2 otherwise. From
the definition of 2/3-accuracy, in this procedure,

Perr < 1/3. (14)

However, one of the intermediate results on Hamiltonian distinguishability in [1] is the following:

Lemma 4 (H distinguishability, adapted from [1] section III.B ). Any algorithm solving the distin-
guishability problem defined above for distinguishing between H1 and H2 = H1 + ε1, while applying the
Hamiltonian in the black box for a total time ∆t, satisfies

Perr ≥
1

2

[
1− sin

(
ε∆t

2

)]
(15)

if ε∆t < π.

Combining this lemma and Supplementary Equation (14) we have

1

3
> Perr ≥

1

2

[
1− sin

(
1

3

)]
, (16)

which is a contradiction.

It is straight forward to argue that theorem 6 implies that also the cTEUR holds for Hamiltonians
with unknown eigenvalues:

Theorem 7 (cTEUR for unknown eigenvalues). LetH be a Hamiltonian whose eigenvalues are unknown.
A unitary energy measurement of the input state with respect to H with accuracy δE and confidence
2/3 implemented in complexity T (n) satisfies:

δE · T (n) ∈ Ω(1). (17)

Proof. The proof follows trivially from Theorem 6. The total time the Hamiltonian is sampled if ∆t,
and the definition T (n) ∈ Ω(∆t). Hence by Theorem 6,

T (n)δE ∈ Ω(∆tδE) = Ω(1) (18)

The reason we can prove here Ω(1) rather than just Ω(1/poly) is that the bound is only due to
duration the Hamiltonian was sampled, so the exact computational model is irrelevant.
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Supplementary Note 4: Proofs of Theorem 1 (Shor’s algorithm violates cTEUR)

Shor’s algorithm factorizes an n-bit number N by finding the order r of a randomly chosen y co-prime
to N (i.e., gcd(y,N) = 1), namely the period of the sequence y0, y1, y2... modulo N . To this end, the
algorithm uses the following unitary UN,y acting on n bit strings:

UN,y |x〉 =

{
|x · y mod N〉 0 ≤ x < N

|x〉 otherwise
(19)

Theorem 1. Consider HN,y such that gcd(y,N) = 1, and where N is an n-bit integer. There exists
an energy measurement, which given any eigenstate of HN,y has accuracy δE with confidence 2/3 such
that:

δE · T (n) = O(2−n). (20)

The measurement procedure is such that the given eigenstate remains intact.

Proof by standard phase estimation

To achieve efficient and exponentially accurate measurement of the eigenvalues of HN,y, we use the fact
that HN,y shares the same eigenvectors with UN,y, and their eigenvalues are related in a simple way. To
see this, recall the orbit-stabilizer theorem [5] which implies that UN,y partitions the set {0, 1, ...N − 1}
into orbits, each one being the orbit of some representative element in the set, and that the size of each
orbit divides r. Denote x` the representative of the `thorbit, O(x`). Then the eigenstates of UN,y (and
of HN,y) are of the form

|ψ`,k`〉 =

|O(x`)|−1∑
j=0

e
2πijk`

|O(x`)|
∣∣x` · yj mod N

〉 ` ∈ {1, 2, ...,#orbits}
k` ∈ {0, 1, ..., |O(x`)| − 1} (21)

The eigenvalue of ψ`,k` with respect to UN,y is eiϕ = e
2πik`

|O(x`)| . The eigenvalue with respect to HN,y is
E`,k` = 2 cos(ϕ). Estimating E`,k` to within exponential accuracy will be achieved by a measurement of
ϕ to within exponential accuracy. Note that in physics, HN,y describes a tight binding model of several
disjoint 1D lattices, each of them with periodical boundary conditions.

The estimation of the eigenvalues of HN,y is thus a standard exercise in quantum computation; for
completeness we include the details below. Importantly, we notice that though it might seem that the
eigenvectors and eigenvalues of the Hamiltonian are known here in advance, in fact they are not - because
they depend on r, which is computationally not known. This will prove that these Hamiltonians exhibit
an exponential violation of the cTEUR, proving Theorem 1.

We are given y and n, and a quantum register containing an eigenstate |ϕ〉 of HN,y with an unknown
eigenvalue 2 cos(ϕ). Let us fix an accuracy parameter q = poly(n). We devise a procedure to estimate
ϕ to within 2π · 2−q with 2/3 probability, using only polynomially in q (and thus in n) quantum gates.
This will prove the theorem.

Since the eigenvector is also an eigenvector of UN,y, of eigenvalue eiϕ, we can use phase estimation
(see section 5.2 in [3]) with respect to UN,y to estimate ϕ, which is directly related to the eigenvalue
2 cos(ϕ) we need.

∑2`−1
k=0 |k〉

|0〉 Had.

QFT†`

{
... Had. ...

|0〉 Had.

|0 . . . 01〉 UkN,y = e−iHN,yk

Supplementary Figure 1: An `-bits phase estimation procedure used in Shor’s algorithm.
The phase is efficiently estimated to accuracy of 2π

2`−2 with confidence 1
4 .
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The first step in phase estimation is to prepare an ancilla register in a superposition of values 0...L−1,
where L = 2`, using ` Hadamard gates (see Supplementary Figure 1). We choose ` = q + 6. Then, UkN,y
is applied, conditioned that the value of the ` control bits is k in binary representation. Finally, the
inverse of the quantum Fourier transform over ZL is applied:

|k〉 QFT†−→
L−1∑
j=0

e−
2πijk
L |j〉 (22)

This gives us the following sequence of implications:

L−1∑
k=0

|ψ〉 |k〉 →
L−1∑
k=0

UkN,y |ψ〉 |k〉 =

L−1∑
k=0

eikϕ |ψ〉 |k〉 → |ψ〉
L−1∑
j=0

|j〉
L−1∑
k=0

ei(kϕ−
2πjk
L ). (23)

Then the first ` qubits are measured and let m be the ` bit outcome. Then the output estimation of
ϕ is ϕ′ = 2πm

2`
.

The following lemma is useful for evaluating the errors of phase estimation.

Lemma 5 (phase estimation confidence (adapted from 5.2.1 in [3])). Let U be a unitary and eiϕ an
eigenvalue of U and let an eigenvector with this eigenvalue be given as input to the phase estimation pro-
cedure. Let m be the measurement outcome of an `-qubits phase estimation circuit (see Supplementary
Figure 1). For any b+ 1 < `,

Pr

(∣∣∣∣ϕ− 2πm

2`

∣∣∣∣ > 2π

2b

)
≤ 1

2(2`−b − 2)
≤ 1

2`−b
. (24)

Lemma 5 shows in our case, setting b = q+4, the probability the estimation ϕ′ is π ·2−q−3 far from the
value of ϕ is ≤ 1/4. Since E = 2 cosϕ, an accuracy δϕ in phase translates to accuracy δE ≤ 2δϕ. Hence
the energy measurement outcome E′ = 2 cosϕ′ is 2−q-far from the correct value E with probability at
least 2/3, as required.

The time complexity of the phase estimation is O(n3), which consists of preparing the superposition
of the ancilla register (O(n)) quantum Fourier transform (O(n2)) and the controlled application of Uk.
The latter is done using the method of modular exponentiation. To compute UkN,y one needs to multiply

a given integer by y raised to the power k modulo N . To this end, the sequence y21

, y22

, ..., y2` mod N
is calculated classically using repeated squaring (O(n) multiplications of integers written on O(n) size
registers yields O(n3) 2-gate operations), and then O(n) ctrl-(UN,y)k gates are applied for a total time
complexity of O(n3). Shor [6] improved the complexity to O(n2 log n log log n) by using improved integer
multiplication techniques.

Proof by Kitaev’s phase estimation

A much simpler algorithm to measure the energy exists, more along the lines of Kitaev’s original pre-
sentation of phase estimation [7]. Given an eigenstate ψE , then by adding a control qubit in the state
1√
2
(|0〉+ |1〉) in another register, and applying U t conditioned on the control qubit being 1, the state of

the control qubit becomes:

1√
2

(|0〉+ e−iEt |1〉) (25)

For each t ∈ {2kπ|k = 0, 1, ...poly(n)} we can generate polynomially many control qubits in this state.
Measuring these qubits (for a fixed k) in the {|+〉 , |−〉} basis enables evaluating one bit of the energy,
with exponentially good confidence in a similar way to evaluating the bias of a classical coin by taking
the average over many trials.

Formally, the phase estimation algorithm is iterative, and is similar to binary search. In the jth

iteration (j ∈ {1, 2, ...poly(n)}) the phase estimated ϕ is assumed to be in the interval [ϕjmin, ϕ
j
max], with

∆j , ϕjmax − ϕ
j
min = π/tj and tj = 2j−1 . We generate m = poly(n) many control qubits in the state

1√
2

(|0〉+ e−i(ϕ−ϕ
j
min)·tj |1〉), (26)
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apply Hadamard on each one of these qubits and measure in the {|0〉 , |1〉} basis (See Supplementary
Figure 2 for a schematic description of the circuit for one such control qubit). This can be done efficiently:
the phase ϕtj is added efficiently by modular exponentiation, and the known phase dependent on ϕjmin is
added by using standard quantum computation techniques. The outcome 1 is achieved with probability

pj = sin2((ϕ− ϕjmin)tj/2) = sin2

(
ϕ− ϕjmin

∆j
· π

2

)
(27)

Let p̃j be the fraction of the measurements with 1 outcome, and let ϕ̃j = 2
tj

arcsin(
√
p̃j) + ϕjmin. It will

serve as the current estimate of ϕ. For the (j + 1)th iteration’s interval (with length ∆j+1), we choose

ϕj+1
min =


ϕjmin ϕ̃− ϕjmin ≤

∆j

3

(
p̃j ≤ 1

4

)
ϕjmin +

∆j

4
∆j

3 < ϕ̃− ϕjmin ≤
2∆j

3

(
1
4 < p̃j ≤ 3

4

)
ϕjmin +

∆j

2 ϕ̃− ϕjmin >
2∆j

3

(
p̃j >

3
4

) (28)

and of course ϕj+1
max = ϕj+1

min + ∆j+1.
Assuming we chose the correct interval in every iteration, after ` iterations we know the phase with

accuracy ∆`+1 = 2−`π.

|+〉 • Had.

|ψϕ〉 U
π

∆j

N,y · e
−iϕjmin·

π
∆j

pj , Pr(1) = sin2
(
ϕ−ϕjmin

∆j
· π2
)

ϕjmin

(pj = 0)

ϕjmin +
∆j
4(

pj = sin2 π
8

)

ϕjmin +
∆j
3(

pj = 1
4

)
ϕjmin +

∆j
2(

pj = 1
2

)

ϕjmin +
2∆j

3(
pj = 3

4

)
ϕjmin +

3∆j
4(

pj = sin2 3π
8

) ϕjmax

(pj = 1)

I

II

III

Supplementary Figure 2: Phase estimation without Fourier transform. Let ψϕ be an eigenstate
with (unknown) eigenvalue eiϕ. The algorithm is very similar to the binary search algorithm: initially ϕ is
confined to the initial interval [ϕ1

min, ϕ
1
max] of size ∆1, and in every iteration the interval is halved. Unlike

binary search, here there are 3 ways to halve the interval (I,II,III). At each iteration, the circuit (top)
is applied m = poly(n) times, and p̃j which denotes the ratio of 1s approximates the actual probability
to measure 1, pj which depends on ϕ. Then, according to p̃j , the next interval, I, II, or III is selected.
After ` = poly(n) iterations the interval’s size is 2−`∆1.

Lemma 6. Let eiϕ be the eigenvalue of the unitary UN,y, and ϕ ∈ [ϕ1
min, ϕ

1
min+π] for a known ϕ1

min. The
phase estimation procedure described above, denoted f(UN,y, [ϕ

1
min, ϕ

1
min + π]), finds ϕ with accuracy

2−`π and with confidence greater than 1 − `e−m/160, where ` is the number of iterations, and m is the
number of times the circuit in Supplementary Figure 2 is applied in each iteration.

Proof. In each iteration there are four scenarios where we choose the wrong interval for the next iteration.
We use the Chernoff bound and its monotonicity to find a bound on the error probability in each scenario,
and then pick the largest one.

Pr(p̃j ≥ γ) ≤ e−
mpj

3 ( γpj
−1)2

γ > pj (29)

Pr(p̃j ≤ γ) ≤ e−
mpj

2 ( γpj
−1)2

γ < pj (30)
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1. The phase is in I−II (see Supplementary Figure 2), i.e., ϕ ∈ [ϕjmin, ϕ
j
min +

∆j

4 ), but we measured

ϕ̃j > ϕjmin +
∆j

3 thus picked intervals II or III:

Pr

[
p̃j >

1

4
∩ pj < sin2(

π

8
)

]
≤ e
−( 1

4 sin2(π
8

)
−1)2m sin2(π8 )/3

= e−m(
√

2−1)/12
√

2 (31)

(we used sin2(π/8) =
√

2−1
2
√

2
)

2. The case symmetric to 1; ϕ is in III−II and intervals I or II were chosen:

Pr

[
p̃j <

3

4
∩ pj > sin2(

3π

8
)

]
≤ e
−( 3

4 sin2( 3π
8

)
−1)2m sin2( 3π

8 )/2
= e
−m (1+

√
2)3

8
√

2 (32)

3. The phase is in (I∩II)−III, i.e., ϕ ∈ [ϕjmin +
∆j

4 , ϕ
j
min +

∆j

2 ) but we measured ϕ̃ > ϕjmin +
2∆j

3 thus
picked interval III:

Pr

[
p̃j >

3

4
∩ pj ∈

[
sin2(

π

8
),

1

2

)]
≤ e−m24 (33)

4. The case symmetric to 3; ϕ is in (III∩II)−I, and interval I was chosen:

Pr

[
p̃j <

1

4
∩ pj ∈

(1

2
, sin2(

3π

8
)
]]
≤ e−m16 (34)

All these errors are smaller than e−m/160. The probability to be in the wrong interval after ` iterations
follows from the union bound and is at most `e−

m
160 .

In general,we have no prior knowledge that ϕ is in some window of size π, and so it can be any value
in [0, 2π]. Using f(UN,y, 0) on an unbounded ϕ creates an ambiguity: ϕ and its mirror value 2π − ϕ
would create the same distribution of measurement outcomes in every iteration. The following algorithm
solves the ambiguity by trying to run f on a range containing both values:

1. Let ϕ̃ = f(UN,y, [0, π])

2. If
∣∣ϕ̃− π

2

∣∣ > 2−`π,
run f on UN,y in a range containing both ϕ̃ and 2π− ϕ̃ (i.e. [π2 ,

3π
2 ] or [0, π2 ]∪ [ 3π

2 , 2π]); return
the result.

3. Else (Unable to determine whether ϕ and 2π − ϕ are in [π2 ,
3π
2 ] or in [0, π2 ] ∪ [ 3π

2 , 2π])

(a) Let U ′N,y = eiπ/4UN,y

(b) Let ξ̃ = f(U ′N,y, [0, π])

(c) If
∣∣∣ξ̃ − π

2

∣∣∣ > 2−`π,

run f on U ′N,y in a range containing both ξ̃ and 2π− ξ̃, (i.e. [π2 ,
3π
2 ] or [0, π2 ]∪ [ 3π

2 , 2π]);
return the result minus π

4 .

(d) Else, the algorithm fails.

If every time f is used, it finds the correct phase (or its mirror value) with accuracy 2−`π, then the
algorithm successfully finds ϕ with accuracy 2−`π. f is called at most three times, therefore by Lemma
6 the algorithm above finds ϕ with accuracy 2−`π and with confidence greater than 1− 3`e−m/160.

Once ϕ is approximated for UN,y, the corresponding energy under HN,y can be calculated by the
relation E = 2 cos(ϕ). The complexity of the algorithm is polynomial in the number of qubits therefore
the proof of theorem 1 is completed.
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Supplementary Note 5: Proof of theorem 2 (main)

Theorem 2. [Main] For n the number of qubits, the following two sets of Hamiltonians are equivalent:

1. FFexp: A normalized Hamiltonian H acting on n qubits is in FFexp if there exists an exponentially
growing function T = 2Ω(n) s.t. H is (T, α)-FF for any α = O(1/poly(n)).

2. SEEMexp: A normalized Hamiltonian H acting on n qubits is in SEEMexp if there exists a function
δE = 2−Ω(n) s.t. H is (η, δE, β)-SEEM for any β = O(1/poly(n)), η = 1−O(1/poly(n)).

The proof builds on two tools. The confidence amplification lemma (Lemma 1) gives efficient exponen-
tial confidence amplification of a low-demolition energy measurement, without increasing the demolition
parameter β too much. The second tool is the FF by concatenation Lemma (Lemma 2) allows increasing
the T parameter of FF at the cost of degrading α. We note that we do not know how to apply confi-
dence amplification to 2−Ω(n) when β is not O(1/poly(n)). Theorem 2 leaves open the possibility that
measurements with larger demolition are not equivalent to FF (this remains to be studied).

Lemma 1 (Confidence amplification). Let η > 1
2 , and let H be a Hamiltonian on n qubits, ‖H‖ ≤ 1,

which is (η, δE, β)−SEEM. Then for any integer m ≥ 1, H is also (1− e−
m
2 (1− 1

2η )
2

, δE,mβ)−SEEM.

Proof. Consider m applications of the non-perturbing unitary energy measurement circuit USEEM with
η-accuracy δE. The probability that the majority of these outputs are within δE of the correct value
can be bounded by the Chernoff bound

Pr(majority of measurements outside the window δE) ≤ e−
m
2 (1− 1

2η )
2

(35)

Hence a median of the measurements is at distance≤ δE from the correct energy value with confidence

1− e−
m
2 (1− 1

2η )
2

. We define the new measurement circuit VSEEM to first apply USEEM m different times,
each time using a new ancilla register. Each such circuit writes E′ on its ancilla register. VSEEM then
unitarily computes the median of these m outputs on an extra register. We know that had one of
these outputs been measured, the probability that it is within δE from the correct value E is at least
η. Since the measurements of those values mutually commute, are independent, and commute with
the measurement of the median, we see that the median is within δE from E with probability at least

1− e−
m
2 (1− 1

2η )
2

.
ṼSEEM is defined by replacing USEEM m by ŨSEEM in the above procedure. Since this is done m times

we have
‖ṼSEEM − VSEEM‖ ≤ m‖ŨSEEM − USEEM‖ ≤ mβ. (36)

The second tool allows increasing the T parameter of fast forwarding at the cost of degrading α.

Lemma 2 (FF by concatenation). For any integer κ > 0, if a Hamiltonian is (T, α)-FF, it is also
(Tκ, ακ)-FF.

Proof. The proof is by concatenation of κ instances of the fast-forwarding circuit; the bound of ακ is
derived by a standard telescopic argument.

To prove Theorem 2 we start by proving that fast forwarding implies super efficient energy mea-
surements. After this we prove the other direction. The proof structure is in Supplementary Figure
3.
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(T, α)-FF

(16T, 16α)-FF

(η = 3
4 , δE = 1

T , β = 16α log 32T )-SEEM

(η = 1− e−n/18, δE = 1
T , β = 16nα log 32T )-SEEM

Concatenation (Lemma 2)

Phase estimation
(Lemma 5)

Confidence amplification
(Lemma 1)

(η > 1
2 , δE, β)-SEEM

(1− e−
n−1)η

2 (1− 1
2η )

2

, δE, (n− 1)β)-SEEM

(T = δE
β , α = 2nβ)-FF

Confidence amplification
(Lemma 1)

Measure the energy unitarily,

denote the result by E′,

add phase e−iE
′t for t ≤ δE/β,

uncompute.

Supplementary Figure 3: Sketch of the equivalence proof in both directions. The boxes
indicate the guaranteed parameters, and the arrows are accompanied by the lemmas used to derive
them.

Claim 2. For T = O(2poly(n)), if a normalized Hamiltonian on n qubits is (T, α)-FF, it is additionally
(1− e−n/18, 1

T , 16nα log(32T ))-SEEM.

Proof. We start by using the concatenation lemma (Lemma 2) to claim the Hamiltonian is (16T, 16α)-
FF. Next we show that (16T, 16α)-FF and T = O(2poly(n)) ⇒ ( 3

4 ,
1
T , 16α log(32T ))-SEEM. The result

then follows from the amplification lemma, Lemma 1 with m = n.
We use the assumption that fast forwarding of H is possible, to efficiently apply phase estimation with

respect to the unitary V = exp (i (H + 1)). V and H of course share eigenvectors, and an eigenvalue E of
H corresponds to an eigenvalue eiϕ for V for ϕ = E+1 (recall that ‖H‖ ≤ 1 so 0 ≤ ϕ = E+1 ≤ 2 ≤ 2π).

Fix ` = blog(32T )c to be the number of bits of ϕ estimated in the phase estimation procedure.

The procedure requires conditional applications of
{
V 2k

}`−1

k=0
; This is done by implementing ` different

instances of fast forwarding of H, eiHt, with t = 20, 21 . . . 2`−1 ≤ 16T .
Using Lemma 5, we get that the `-bit phase estimation procedure estimates ϕ to within δϕ = π·2−(`−3)

with confidence 3/4. We get that the procedure provides an outcome which is within δE = δϕ =
4π · 2−(`−1) ≤ 4π

16T < 1
T from E with confidence 3/4.

To apply the ` instances of conditional applications of powers of V ; {V 2k}`−1
k=0, we apply ` different

16α-approximations of eiHt ⊗ 12c (using the fast forwarding) where each such application works on
the state plus its own ancilla register initialized to 0 (as in Definition 1). We get that β ≤ 16α` ≤
16α log(32T )).

Corollary 1. FFexp ⊆ SEEMexp

Proof. For any β = O
(

1
poly(n)

)
, a Hamiltonian H ∈ FFexp can be FF for some T = O(2poly(n)), with

α = β
16n log(32T ) = O

(
1

poly(n)

)
. Hence, by Claim 2, H is (1 − e−n/18, 1/T, β)-SEEM, and therefore it is

(η, 1/T, β)-SEEM for any η, β = O
(

1
poly(n)

)
. We conclude that H ∈ SEEMexp.

We now prove that SEEM implies FF with the desired parameters:

Claim 3. Let H be an n qubit Hamiltonian with ‖H‖ ≤ 1 which is (η, δE, β)-SEEM for η > 1/2. Let
TδE < π

2 , then H is also (T, 2η sin(δET ) + 2(1− η + β))-FF.

Proof. The idea of the proof is to apply the unitary ŨSEEM approximating the measurement of the
energy, which exists since the Hamiltonian can be super-efficiently measured, by Definition 2. Then,
based on the output E′ of this measurement, written on the quantum register, multiply the state by the
phase e−iE

′t (denote this by the gate V ), and finally apply the inverse of the approximated measurement
unitary. Let |α〉 = |ψE〉 ⊗ |0〉. First we consider the exact measurement with no demolition (β = 0),
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USEEM; notice that it commutes with H:∥∥∥(U†SEEMV USEEM − e−iHt ⊗ 1W
)
|α〉
∥∥∥ =

∥∥∥(U†SEEMV USEEM − U†SEEM

(
e−iHt ⊗ 1W

)
USEEM

)
|α〉
∥∥∥

=
∥∥(V USEEM −

(
e−iHt ⊗ 1W

)
USEEM

)
|α〉
∥∥ , (37)

where the Hilbert space of the work/output register is denoted by W. On a specific eigenvector ψE :

∥∥V USEEM |ψE , 0, 0〉 −
(
e−iHt ⊗ 1W

)
USEEM |ψE , 0〉

∥∥ =

∥∥∥∥∥∑
E′

aE′(e
−iE′t − e−iEt) |ψE , E′, g(E′)〉

∥∥∥∥∥
=

∥∥∥∥∥∥
∑

E′:|E′−E|≤δE

aE′(e
−iE′t − e−iEt) |ψE , E′, g(E′)〉+

∑
E′:|E′−E|>δE

aE′(e
−iE′t − e−iEt) |ψE , E′, g(E′)〉

∥∥∥∥∥∥
≤ 2η sin(δEt) + 2(1− η),

(38)

where the last inequality is correct for t ≤ π/2δE. Notice that the above holds for any state |ψ〉 =∑
cE
cE |ψE〉, using the fact that both USEEM and V leave the left register in tact. The proof follows

since we have
∥∥∥Ũ†SEEMV ŨSEEM − U†SEEMV USEEM

∥∥∥ ≤ 2β.

Corollary 2. Let H be a normalized Hamiltonian on n qubits, which is (η, δE, β)-SEEM for η > 1/2
and β < π/2. Then H is also (β/δE, 2nβ +O(2−poly(n))-FF.

Proof. Using Lemma 1 with m = n − 1 we reach an (1 − e−
(n−1)η

2 (1− 1
2η )

2

, δE, (n − 1)β)-SEEM. Now
choose T = β/δE and since TδE = β < π/2 we can apply claim 3. The FF error α according to Claim
3 is bounded by 2nβ + 2−poly(n).

Corollary 3. SEEMexp ⊆ FFexp

Proof. Let H ∈ SEEMexp, δE = Ω(2−poly(n)). We choose T to be any exponentially growing function

such that TδE decays faster than any polynomial (say, T = 1
δE0.99 ). Let α = O

(
1

poly(n)

)
be a goal

parameter for the fast forwarding. By assumption, H is (η = 2/3, δE, β = α/3n = O
(

1
poly(n)

)
)−SEEM.

From corollary 2, H is also (β/δE, α)-FF. By our choice of T , it is thus (T, α)-FF. Since this holds for
any inverse polynomial α, we have H ∈ SEEMexp.

This completes the proof of theorem 2.

Supplementary Note 6: Proof of theorem 3 (FF Commuting H)

Theorem 3. If H is an n qubit normalized commuting k−local Hamiltonian, with k = O(log(n)), then
it can be (T, α)-fast forwarded with T = 2O(n) and arbitrary exponentially small α.

Proof. Since the terms Hj commute, we have e−iHt =
∏
j e
−iHjt. It thus suffices to be able to implement

e−iHjt for t exponentially large, with the required exponentially small error. Let Uj be a unitary matrix

which diagonalizes Hj , Dj = UjHjU
†
j . Since Uj acts non-trivially on k qubits at most, all entries of

Uj ’s eigenvalues and eigenvectors can be efficiently calculated classically to within exponential accuracy
(e.g., [8, 9]). Standard quantum computation techniques [3] can be used to apply e−iHjt to within any
desired exponentially good accuracy.
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Supplementary Note 7: Proof of theorem 4 (FF Quadratic Fermion H)

Theorem 4. Let H be a quadratic Hamiltonian of n Fermions with poly(n) modes. H can be (T, α)-fast
forwarded with T = 2Ω(n) and arbitrary inverse polynomial α.

Quadratic Fermion Hamiltonians are defined as follows

H =

m∑
i,j

Ai,ja
†
iaj +

1

2

∑
ij

Bi,jaiaj +
1

2

∑
i,j

B∗j,ia
†
ia
†
j A = A†, B = B†, (39)

where ai, a
†
i are the annihilation and creation operators respectively

{ai, aj} = 0
{
a†i , a

†
j

}
= 0

{
ai, a

†
j

}
= δi,j . (40)

The proof idea is to efficiently “diagonalize” the Hamiltonian by the Bogoliubov transformation [10,11]

to the form H =
∑
i λib

†
i bi + tr(A)/2. The operators bi, b

†
i are called quasiparticle annihilation and

creation operators respectively, and they inherit the commutation/anti commutation relations of ai, a
†
i

as in Supplementary Equations (40). Additionally, the number operator b†i bi has integer eigenvalues.

Fast forwarding is enabled by efficiently evolving the system under H ′ =
∑
i(λit mod 2π)b†i bi for one

time unit, and by adding a global phase t · tr(A)/2.

Claim 4. Let a be a column vector whose jth coordinate is aj and let a† be a column vector whose jth

coordinate is a†j . The Hamiltonian H can be written as

H =
1

2

(
a† a

)( A B∗

B −A∗
)(

a
a†

)
+

1

2
tr(A) (41)

Here, the overline indicates a matrix transposition, i.e., a†,a are the row vectors corresponding to a†,a
respectively.

Proof. The proof relies on the hermiticity of A,B and the anticommutation relations. For i 6= j

∑
i 6=j

Ai,ja
†
iaj =

1

2

∑
i 6=j

(
Ai,ja

†
iaj −Ai,jaja

†
i

)
=

1

2

∑
i 6=j

Ai,ja
†
iaj −

∑
j 6=i

Aj,iaia
†
j

 =
1

2

∑
i6=j

(Ai,ja
†
iaj−A

∗
i,jaia

†
j)

(42)
For i = j,

∑
i

Ai,ia
†
iai =

1

2

∑
i

Ai,ia
†
iai +

1

2

∑
i

Ai,i(1− aia†i ) =
1

2

(∑
i

Ai,ia
†
iai −

∑
i

A∗i,iaia
†
i + tr(A)

)
(43)

Reorganizing H as a block matrix concludes the proof.

Claim 5. The traceless part of the Hamiltonian can be diagonalized:

H =
1

2

(
a† a

)
UDU†

(
a
a†

)
+

1

2
tr(A) (44)

where D is a real diagonal matrix s.t. Dj,j = −Dj+n,j+n and U is unitary. Furthermore, there exist

matrices V1, V2 s.t. U is a block matrix in the form U =

(
V1 V ∗2
V2 V ∗1

)
Proof. Note the following symmetry of the traceless matrix H:

H ≡
(
A B†

B −A∗
)

H† = H, τHτ = −H∗, τ ≡
(

0 1m

1m 0

)
(45)
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The symmetry of H implies a symmetry on its eigenvectors, which are the column vectors of U .

H
(
v1

v2

)
= λ

(
v1

v2

)
⇒ H

(
v∗2
v∗1

)
= −λ

(
v∗2
v∗1

)
(46)

Hence if either v1 6= v∗2 or v2 6= v∗1 , then the eigenvectors come in pairs: w, τw∗. In the case v1 = v∗2
and v2 = v∗1 , we get that λ = 0. Since there is an even number of eigenvectors of the first case, and
the dimension of the subspace is 2m, there’s also an even number of eigenvectors of the second case,
with eigenvalue 0. Picking a pair of orthogonal eigenvectors w1, w2, with eigenvalue 0, we can span the
subspace they define using w′1 = w1 + iw2 and w′2 = w1 − iw2, and we get that w′1 = τw′∗2 . Hence all
eigenvectors of H come in pairs w, τw∗. By placing one eigenvector of the ith pair in column i of U and
the other eigenvector in column m + i, U takes the desired form. Additionally, the column placement
forces Dj,j = −Dj+m,j+m.

Claim 6. By defining (
b
b†

)
= U†

(
a
a†

)
. (47)

The Hamiltonian takes the form

H = 2

m∑
i=1

b†i biDi,i +
1

2
tr(A) (48)

The new operators obey the anti-commutation relations of Fermions. In addition, the eigenvalues of b†i bi
either 0 or 1.

Proof. From Supplementary Equations (47) and the definition of U ,

bi =
∑
j

(V †1 )i,jaj + (V †2 )i,ja
†
j (49)

b†i =
∑
j

(V 2)i,jaj + (V 1)i,ja
†
j (50)

Hence b†i is indeed the Hermitian conjugate of bi. Additionally, one can see that
(

b† b
)

=
(

a† a
)
U .

Next we show that the transformation is canonical, i.e., the anticommutation relations are preserved:

{bi, bj} =

{
m∑
k=1

U∗k,iak +

m∑
k=1

U∗k+m,ia
†
k,

m∑
`=1

U∗`,ja` +

m∑
`=1

U∗`+m,ja
†
`

}

=

m∑
k=1

(
U∗k,iU

∗
k+m,j + U∗k+m,iU

∗
k,j

)
=

m∑
k=1

(
U∗k,iUk,j+m + U∗k+m,iUk+m,j+m

)
= 0

(51)

(we used the structure of U for the transition of the second line)

{
bi, b

†
j

}
=

{
m∑
k=1

U∗k,iak +

m∑
k=1

U∗k+m,ia
†
k,

m∑
`=1

U`,ja
†
` +

m∑
`=1

U`+m,ja`

}
=

m∑
k=1

(
U∗k,iUk,j + U∗k+m,iUk+m,j

)
= δi,j

(52)

Finally, the eigenvalues of b†jbj are 0 and 1, because (b†jbj)
2 = b†jbjb

†
jbj = (1− bjb†j)b

†
jbj = b†jbj , similarly

to the number operator a†jaj .

We can now use the above claims to achieve FF. In Supplementary Equation (48), the modes bi are
independent, and in particular, the Hamiltonian is a sum of m commuting terms. Therefore, an evolution
under H for time t can be implemented by

eiHt = e−it tr(A)/2
∏
j

e2iDjjtb
†
jbj (53)
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Since the eigenvalues of each term are Dj,jt times an integer (using Claim 6) we have that if we replace
H by a matrix with the same eigenvectors but with eigenvalues (Dj,jt mod 2π), it will have the same
evolution on any state, in other words if we define

H ′ =
1

2

(
a† a

)
UD′U†

(
a
a†

)
+

1

2
tr(A) (54)

D′i,j = δi,jDi,it mod 2π (55)

we get
e−iH

′
= e−iHt (56)

Hence it is sufficient to simulate the evolution under H ′ to time t = 1. To do this we observe that Supple-
mentary Equation (54) means that H ′ is a quadratic Hamiltonian in {ai} and {a†i}, whose coefficients can
be calculated by a classical computer in time polynomial in m to within exponential accuracy [8,9]. As-
suming that we can implement any quadratic Hamiltonian of polynomial number of coefficients exactly,
we need only apply H ′ for one time unit to fast forward H for exponential duration t, with arbitrary
exponentially small α. However, the assumption that a quadratic Hamiltonian with general coefficients
can be implemented exactly is not realistic; Assuming inverse polynomial error in each of the coefficients
in the quadratic Hamiltonian results in an overall inverse polynomial error and thus would still lead to
a fast forwarding procedure for exponential duration of time, but with inverse polynomial error α.

Supplementary Note 8: Proof of No generic FF

We now prove theorem 5.

Theorem 5. A generic procedure for (T = 2(n1/c), α = n−4/c)-fast forwarding a 2-sparse row-computable
Hamiltonian, with c > 1, does not exist (unless BQP = PSPACE).

2-sparse row-computable Hamiltonians are those with at most two non-zero entries per row in the
matrix representation of the Hamiltonian. These entries also need to be computed efficiently given the
row index. Such Hamiltonians are known to be efficiently simulable by quantum circuits [12,13].

BQP is the class of problems that can be solved in polynomial time by a quantum computer;
PSPACE is the class of problems that can be solved in polynomial space by a classical (or quantum,
this doesn’t matter) computer. It is known that PSPACE contains BQP but it is strongly believed to
be a strictly larger class.

The proof of the theorem is by using the procedure to solve the PSPACE-complete problem OTHER

END OF THIS LINE (OEOTL) [14] in polynomial time. We recall the definition of the problem

Definition 3 (OEOTL). Let G = (V,E) be a directed graph whose 2n vertices are indexed by n bits
vectors. G is given by two polynomial size classical circuits S and P , s.t. there is an edge from u to v
only if S(u) = v and P (v) = u (Hence G contains only paths, cycles, or isolated vertices). Given such
a G and given that the vertex 0n has no incoming edge but has an outgoing edge, find the other end of
the line that starts with 0n.

The algorithm is as follows:

1. Let v0 = 0, H0 = H

2. For i=1 to 100n

(a) Check that 10 steps forward from vi−1 the end of the line is not reached; if it is, output it
and exit.

(b) Perform a (1− e−n/18, 5−n, 40n−2)-SEEM on the state |vi−1〉 under Hi−1.

(c) Measure in the computational basis, denote the result by vi. Let Hi be the original Hamil-
tonian H with the edge (vi − 1, vi) removed.

3. Move 10 steps forward from the vertex reached. If the end of the line is found return it and exit.
Otherwise, the algorithm fails.
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Proof of correctness:
The idea of the proof is to make progress on the path, as follows: Starting from the first node v0, we use
the SEEM (stage 2b) to measure the energy with respect to H0 (assume β = 0 for now). Due to the high
accuracy of the measurement, the resulting state, conditioned on the measurement outcome, is close to
an eigenstate. All eigenstates are symmetric around the middle of the path, hence the measurement in
the computational basis in stage 2c, yields with good probability a vertex v1 that is closer to the end
of the path than to v0 namely, the remaining path length is likely to be halved. We call this event a
successful iteration, and show its probability is at least 1/10 if the path length is more than 10. An
unsuccessful iteration does not increase the length of the path, it just doesn’t succeed in shrinking by half.
The vertex v1 is now the next starting point, and H1 is fixed to prevent going backwards by correcting
H to not include the edge connecting v1 to the previous vertex on the line. After n successful iterations,
the vertex reached should be the end of the line. By Chernoff, the probability of at least n successful
iterations with 1/10 success probability, out of 100n iterations is ≥ 1− e−81n/20, which is exponentially
close to one. If at some stage the length of the path is smaller than 10, the success probability may be
smaller than 1/10, but the end of the line is found in stage 3. An analysis of β > 0 concludes the proof.

Let Umeas. be the measurement with β = 0, and confidence η = 1 − e−n/18 with respect to Hi.
Suppose the vertex found in the previous round is v = vi, and consider applying Umeas. to |v, 0, 0〉 where
the additional two registers are the output and work registers. Denote the result of measuring the two
additional registers by εj , g. Let f be the function s.t. ψf(j) is the eigenstate of Hi with energy closest
to εj (the lower energy eigenstate if there is a tie). f is well defined since all eigenvalues of Hi within the
relevant subspace have multiplicity 1. We omit adding an i index to f , and to the eigenstates/eigenvalues
of Hi since both H and Hi in the relevant subspaces are Hamiltonians of paths, only the length of the
path and the starting vertex change.

Claim 7. Let aj be the amplitude of ψf(j) after measuring εj , g. The expectation of |aj |2 over j, g

satisfies: Ej,g
(
|aj |2

)
=
∑
g,j |aj |

2
Pr (εj , g) ≥ η.

Proof. Let f−1 be the preimage of f ,

Ej,g(|aj |2) =
∑
g,j

|aj |2 Pr (εj , g) =
∑
g,j

Pr(ψf(j)|εj , g) Pr (εj , g) =
∑
g,j

Pr(εj , g, ψf(j))

=
∑
k

Pr(ψk)
∑

g,j:j∈f−1(k)

Pr(εj , g|ψk) ≥ η
(57)

The last inequality, is due to the η-confidence of the measurement, and that all measurement outcomes
in the window δE around Ek are in f−1(k).

Claim 8. Let Li = L−vi ≥ 10 and `i =
⌈
Li
2

⌉
. The probability for a successful iteration, i.e., vi+1 ≥ vi+`i

is at least 1/10 for the value of η.

Proof. After measuring εj , g, the state of the system is aj
∣∣ψf(j)

〉
+
√

1− |aj |2
∣∣∣ψ⊥f(j)

〉
. We define the Πi

to be a projection on the vertices v ≥ vi + `i. The symmetry of the eigenstates around the middle of the

path implies that 2
∥∥Πi

∣∣ψf(j)

〉∥∥2
+ 2

Li+1 ≥ 1, therefore 1
2 −

1
Li+1 ≤

∥∥Πi

∣∣ψf(j)

〉∥∥2 ≤ 1
2 .

Pr (vi+1 ≥ vi + `i|εj , g) =

∥∥∥∥Πi

(
aj
∣∣ψf(j)

〉
+

√
1− |aj |2

∣∣∣ψ⊥f(j)

〉)∥∥∥∥2

≥ |aj |2
∥∥Πi

∣∣ψf(j)

〉∥∥2
+
(

1− |aj |2
)∥∥∥Πi

∣∣∣ψ⊥f(j)

〉∥∥∥2

− 2 |aj |
√

1− |aj |2
∥∥Πi

∣∣ψf(j)

〉∥∥ ∥∥∥Πi

∣∣∣ψ⊥f(j)

〉∥∥∥
≥ |aj |2

(
1

2
− 1

Li + 1

)
− |aj |

√
2− 2 |aj |2

(58)

Using the inequality x
√

2− 2x2 ≤ 99(1 − x2) + 0.01 for 0 ≤ x ≤ 1, we bound the probability by
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|aj |2
(

99.5− 1
Li+1

)
− 99.01. Finally, we average over all g, j:

Pr (vi+1 ≥ vi + `i) ≥
∑
g,εj

Pr (vi+1 ≥ vi + `i|εj , g) Pr(εj , g) ≥ Ej,g
(
|aj |2

)(
99.5− 1

Li + 1

)
− 99.01

≥ η
(

99.5− 1

Li + 1

)
− 99.01

(59)

With η = 1− e−n/18, the probability for a successful iteration is at least 1/10 for Li > 10.

Claim 9. When the algorithm applies the SEEM with β = 0, it succeeds with probability at least
1− e−81n/20.

Proof. Consider the 100n iterations in the protocol, when if the protocol had ended before completing
all iterations, the iteration is simply idle. An iteration i is declared “successful” if either it is idle, or if
not, the length of the path had been halved during step 2(c) of this iteration. By this definition and by
Claim 8, the probability of the ithiteration to be successful is > 1/10, even when we condition on what
happened in previous iterations. Let X be the number of successful iterations out of the 100n iterations.
We want to bound the probability that X > n from below. We note that this probability is bounded
from below by the corresponding probability for the number Y of successful iterations when we have
100n i.i.d Bernoulli variables, each with probability exactly 1/10 for success. For i.i.d variables we can
use the Chernoff bound,

Pr(Y ≤ (1− δ)µ) ≤ e−δ
2µ/2. (60)

where µ is the expectation of Y , and we have here µ = 10n. Setting (1 − δ)µ = n, δ = 9/10, we
have Pr(Y > n) ≥ 1 − e−81n/20. This means that Pr(X > n), the probability for at least n successful
iterations, is at least 1− e−81n/20. After n successful iterations the path length must have reached below
10 since L

2n ≤ 1, and the algorithm succeeds in finding the end of the line.

We analyze what is the success probability of the algorithm with β > 0. To this end, consider first
a unitary version of the above algorithm, still with β = 0, where the only measurement is at the end.
In stage 2c, we copy (using cNOTs) the result vi to a separate register in every iteration instead of
measuring. In stage 2b we apply the super efficient energy measurement, where the Hamiltonian is
conditioned on the copy of vi. The outcome and the garbage are written on a separate register in every
iteration. At the end of the algorithm, an indicator qubit is set to 1 if the algorithm found the end of the
line and 0 otherwise. In this version the algorithm is unitary, and the only difference between β = 0 and
β > 0 cases are the 100n instances of SEEMs. Thus, at the end of the algorithm, just before measuring,
the state with β > 0 SEEMs (denoted ξ̃) deviates at most by 100βn from the state in which β = 0
SEEMs were used (denoted ξ). Let Π be the projection on a successful outcome of the algorithm, i.e.,
the indicator qubit is 1. We bound the algorithm success probability for β > 0:∥∥∥Π

∣∣∣ξ̃〉∥∥∥2

=
∥∥∥Π |ξ〉+ Π

(∣∣∣ξ̃〉− ∣∣∣ξ̃〉)∥∥∥2

≥ (‖Π |ξ〉‖ − 100βn)
2 ≥ ‖Π |ξ〉‖2 − 200βn (61)

Hence the success probability is reduced by 200βn. Since β = 40n−2 the success probability is polyno-
mially close to 1.

The main contribution to the time complexity of the algorithm is from the 100n rounds of step 3. The
SEEM in each round calls O(log n) times to the fast forwarding procedure. Hence the time complexity
is polynomial in n.

We conclude the proof of Theorem 5 by relaxing the demand for the generic FF procedure. Consider

a generic fast forwarding procedure for n qubit Hamiltonians with parameters T = 2(n1/c), and α =
n−4/c with c > 1. This procedure is weaker than a generic fast forwarding procedure with parameters
T = 5n and α = n−4 used in the proof, however one can use the weaker procedure to (5n, n−4)-FF any
Hamiltonian.

Given an n qubit HamiltonianH, one can define anm = (3n)c qubit HamiltonianH ′ = H⊗12m−n . H ′

is still 2-sparse row-computable, therefore it can be FF using the weaker procedure for T = 2(m1/c) ≥ 5n

and with α = m−4/c = (3n)−4 < n−4 (polynomial complexity in m is also polynomial in n). Hence
OEOTL can be solved efficiently using the weaker generic FF procedure. �
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Supplementary Note 9: Uncertainty relations and metrology

The results presented here are related in various ways to the problem of highly sensitive measurements
in metrology. A typical problem in sensing or quantum metrology (see e.g. [4, 15]), is to estimate the
phase ϕ of an unknown phase shifter (i.e., a black box). The canonical setting is a Mach-Zehnder inter-
ferometer. Assuming the optical paths are equal, the Fock state of the probe before the measurement is
cos(ϕ/2) |1〉a |0〉b + i sin(ϕ/2) |0〉a |1〉b, where a, b denote the two spatial modes. ϕ is estimated by mea-
suring which of the paths the probe had taken (and taking statistics over many experiments). Classically,
one can improve the accuracy (standard deviation here) by a factor of

√
n (achieving the standard quan-

tum limit) by repeating the experiment n times independently. A more efficient parameter estimation
than this straightforward approach is categorized as super-sensing. Using n entangled photons in the
“NOON state” [16–18] |n〉a |0〉b + |0〉a |n〉n the distinguishability improves by a factor of n. When the
Hamiltonian is accessed as a black box, this 1/n scaling is optimal. This bound is referred to as the
Heisenberg limit [4, 15,19,20].

An interesting observation is that in this example, the experiment time is a constant, i.e., independent
of the number of photons. This is because in physical reality, there is no limit on the number of photons
that can reside in a Hamiltonian confined to a volume in space (e.g., a phase shifter). We note that this is
not allowed in both the computational models of [1] and in our definition of unitary energy measurement
- the Hamiltonian in these models is applied to one system at a time (we can call this “the single probe
assumption”). When simulating the above NOON experiment in our computational model, we will get
a factor of n in the computational complexity, and thus the complexity of the measurement will become
nτ where τ is the time a probe spends inside the phase shifter. In this setting of estimating the phase of
the phase shifter, the Heisenberg limit coincides with the TEUR, since the TEUR then reads

nτ ·∆ϕ/τ = n ·∆ϕ ≥ 1. (62)

In the general case, one is interested in parameter estimation of a Hamiltonian which is a known
operator function depending on some set of unknown parameters. In these cases, some partial knowledge
about the eigenvalues is given; The question of whether it is possible to obtain violations of the cTEUR
when the Hamiltonian is not accessed through a black-box remains to be investigated.
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